{ "id": "math/0609120", "version": "v2", "published": "2006-09-05T03:33:12.000Z", "updated": "2007-04-11T00:07:23.000Z", "title": "Equidistribution and integral points for Drinfeld modules", "authors": [ "Dragos Ghioca", "Thomas J. Tucker" ], "categories": [ "math.NT", "math.AG" ], "abstract": "We prove that the local height of a point on a Drinfeld module can be computed by averaging the logarithm of the distance to that point over the torsion points of the module. This gives rise to a Drinfeld module analog of a weak version of Siegel's integral points theorem over number fields and to an analog of a theorem of Schinzel's regarding the order of a point modulo certain primes.", "revisions": [ { "version": "v2", "updated": "2007-04-11T00:07:23.000Z" } ], "analyses": { "subjects": [ "11G50", "11J68", "37F10" ], "keywords": [ "equidistribution", "siegels integral points theorem", "drinfeld module analog", "torsion points", "weak version" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9120G" } } }