{ "id": "math/0609015", "version": "v1", "published": "2006-09-01T05:46:04.000Z", "updated": "2006-09-01T05:46:04.000Z", "title": "The Measure-Theoretical Entropy of a Linear Cellular Automata with respect to a Markov Measure", "authors": [ "Hasan Akin" ], "comment": "7 pages", "categories": [ "math.DS", "math.FA" ], "abstract": "In this paper we study the measure-theoretical entropy of the one-dimensional linear cellular automata (CA hereafter) $T_{f[-l,r]}$, generated by local rule $f(x_{-l},...,x_{r})= \\sum\\limits_{i=-l}^{r}\\lambda_{i}x_{i}(\\text{mod}\\ m)$, where $l$ and $r$ are positive integers, acting on the space of all doubly infinite sequences with values in a finite ring $\\mathbb{Z}_{m}$, $m \\geq 2$, with respect to a Markov measure. We prove that if the local rule $f$ is bipermutative, then the measure-theoretical entropy of linear CA $T_{f[-l,r]}$ with respect to a Markov measure $\\mu_{\\pi P}$ is $ h_{\\mu_{\\pi P}}(T_{f[-l,r]})=-(l+r)\\sum\\limits_{i,j=0}^{m-1}p_ip_{ij}\\text{log} p_{ij}.$", "revisions": [ { "version": "v1", "updated": "2006-09-01T05:46:04.000Z" } ], "analyses": { "subjects": [ "28D15", "37A15" ], "keywords": [ "markov measure", "measure-theoretical entropy", "local rule", "one-dimensional linear cellular automata", "linear ca" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9015A" } } }