{ "id": "math/0608727", "version": "v1", "published": "2006-08-29T18:45:04.000Z", "updated": "2006-08-29T18:45:04.000Z", "title": "$m$-cluster categories and $m$-replicated algebras", "authors": [ "I. Assem", "T. Brüstle", "R. Schiffler", "G. Todorov" ], "comment": "28 pages, 2 figures", "categories": [ "math.RT", "math.RA" ], "abstract": "Let A be a hereditary algebra over an algebraically closed field. We prove that an exact fundamental domain for the m-cluster category of A is the m-left part of the m-replicated algebra $A^{(m)}$ of A. Moreover, we obtain a one-to-one correspondence between the tilting objects in the m-cluster category (that is, the m-clusters) and those tilting $A^{(m)}$-modules for which all non projective-injective direct summands lie in the m-left part of $A^{(m)}$.", "revisions": [ { "version": "v1", "updated": "2006-08-29T18:45:04.000Z" } ], "analyses": { "subjects": [ "16G20", "16G70", "16E10", "18E30" ], "keywords": [ "cluster categories", "replicated algebras", "m-cluster category", "non projective-injective direct summands lie", "m-left part" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8727A" } } }