{ "id": "math/0608694", "version": "v1", "published": "2006-08-28T16:53:26.000Z", "updated": "2006-08-28T16:53:26.000Z", "title": "Distance-regular graphs and the $q$-tetrahedron algebra", "authors": [ "Tatsuro Ito", "Paul Terwilliger" ], "comment": "22 pages", "categories": [ "math.CO", "math.QA" ], "abstract": "Let $\\Gamma$ denote a distance-regular graph with classical parameters $(D,b,\\alpha,\\beta)$ and $b\\not=1$, $\\alpha=b-1$. The condition on $\\alpha$ implies that $\\Gamma$ is formally self-dual. For $b=q^2$ we use the adjacency matrix and dual adjacency matrix to obtain an action of the $q$-tetrahedron algebra $\\boxtimes_q$ on the standard module of $\\Gamma$. We describe four algebra homomorphisms into $\\boxtimes_q$ from the quantum affine algebra $U_q({\\hat{\\mathfrak{sl}}_2})$; using these we pull back the above $\\boxtimes_q$-action to obtain four actions of $U_q({\\hat{\\mathfrak{sl}}_2})$ on the standard module of $\\Gamma$.", "revisions": [ { "version": "v1", "updated": "2006-08-28T16:53:26.000Z" } ], "analyses": { "subjects": [ "05E30" ], "keywords": [ "distance-regular graph", "tetrahedron algebra", "standard module", "dual adjacency matrix", "quantum affine algebra" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8694I" } } }