{ "id": "math/0608681", "version": "v2", "published": "2006-08-28T09:28:53.000Z", "updated": "2006-11-20T09:30:37.000Z", "title": "Modified log-Sobolev inequalities and isoperimetry", "authors": [ "Alexander V. Kolesnikov" ], "comment": "26 pages", "categories": [ "math.PR", "math.FA" ], "abstract": "We find sufficient conditions for a probability measure $\\mu$ to satisfy an inequality of the type $$ \\int_{\\R^d} f^2 F\\Bigl(\\frac{f^2}{\\int_{\\R^d} f^2 d \\mu} \\Bigr) d \\mu \\le C \\int_{\\R^d} f^2 c^{*}\\Bigl(\\frac{|\\nabla f|}{|f|} \\Bigr) d \\mu + B \\int_{\\R^d} f^2 d \\mu, $$ where $F$ is concave and $c$ (a cost function) is convex. We show that under broad assumptions on $c$ and $F$ the above inequality holds if for some $\\delta>0$ and $\\epsilon>0$ one has $$ \\int_{0}^{\\epsilon} \\Phi\\Bigl(\\delta c\\Bigl[\\frac{t F(\\frac{1}{t})}{{\\mathcal I}_{\\mu}(t)} \\Bigr] \\Bigr) dt < \\infty, $$ where ${\\mathcal I}_{\\mu}$ is the isoperimetric function of $\\mu$ and $\\Phi = (y F(y) -y)^{*}$. In a partial case $${\\mathcal I}_{\\mu}(t) \\ge k t \\phi ^{1-\\frac{1}{\\alpha}} (1/t), $$ where $\\phi$ is a concave function growing not faster than $\\log$, $k>0$, $1 < \\alpha \\le 2$ and $t \\le 1/2$, we establish a family of tight inequalities interpolating between the $F$-Sobolev and modified inequalities of log-Sobolev type. A basic example is given by convex measures satisfying certain integrability assumptions.", "revisions": [ { "version": "v2", "updated": "2006-11-20T09:30:37.000Z" } ], "analyses": { "subjects": [ "60E15", "26D10" ], "keywords": [ "modified log-sobolev inequalities", "inequality", "isoperimetry", "basic example", "log-sobolev type" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8681K" } } }