{ "id": "math/0608595", "version": "v1", "published": "2006-08-24T02:02:47.000Z", "updated": "2006-08-24T02:02:47.000Z", "title": "On the distribution of Kloosterman sums", "authors": [ "I. E. Shparlinski" ], "categories": [ "math.NT" ], "abstract": "For a prime $p$, we consider Kloosterman sums $$ K_{p}(a) = \\sum_{x\\in \\F_p^*} \\exp(2 \\pi i (x + ax^{-1})/p), \\qquad a \\in \\F_p^*, $$ over a finite field of $p$ elements. It is well known that due to results of Deligne, Katz and Sarnak, the distribution of the sums $K_{p}(a)$ when $a$ runs through $\\F_p^*$ is in accordance with the Sato--Tate conjecture. Here we show that the same holds where $a$ runs through the sums $a = u+v$ for $u \\in \\cU$, $v \\in \\cV$ for any two sufficiently large sets $\\cU, \\cV \\subseteq \\F_p^*$. We also improve a recent bound on the nonlinearity of a Boolean function associated with the sequence of signs of Kloosterman sums.", "revisions": [ { "version": "v1", "updated": "2006-08-24T02:02:47.000Z" } ], "analyses": { "subjects": [ "11L05", "11L26" ], "keywords": [ "kloosterman sums", "distribution", "boolean function", "finite field", "sufficiently large sets" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8595S" } } }