{ "id": "math/0608573", "version": "v1", "published": "2006-08-23T11:30:40.000Z", "updated": "2006-08-23T11:30:40.000Z", "title": "On chaos of a cubic $p$-adic dynamical system", "authors": [ "Farrukh Mukhamedov", "José F. F. Mendes" ], "comment": "10 pages", "journal": "In book: Differential Equations, Chaos and Variational Problems, Series: Progress in Nonlinear Differential Equations and Their Applications, Vol. 75. Staicu, Vasile (Ed.), 2008, pp. 305--316", "categories": [ "math.DS", "math.NT" ], "abstract": "In the paper we describe basin of attraction of the $p$-adic dynamical system $f(x)=x^3+ax^2$. Moreover, we also describe the Siegel discs of the system, since the structure of the orbits of the system is related to the geometry of the $p$-adic Siegel discs.", "revisions": [ { "version": "v1", "updated": "2006-08-23T11:30:40.000Z" } ], "analyses": { "subjects": [ "37E99", "37B25", "54H20", "12J12" ], "keywords": [ "adic dynamical system", "adic siegel discs", "attraction" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8573M" } } }