{ "id": "math/0608464", "version": "v2", "published": "2006-08-18T09:04:52.000Z", "updated": "2007-10-15T02:50:29.000Z", "title": "Class field theory for a product of curves over a local field", "authors": [ "Takao Yamazaki" ], "comment": "14 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "We prove that the the kernel of the reciprocity map for a product of curves over a $p$-adic field with split semi-stable reduction is divisible. We also consider the $K_1$ of a product of curves over a number field.", "revisions": [ { "version": "v2", "updated": "2007-10-15T02:50:29.000Z" } ], "analyses": { "subjects": [ "11G45", "14C35", "19F05" ], "keywords": [ "class field theory", "local field", "split semi-stable reduction", "number field", "reciprocity map" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8464Y" } } }