{ "id": "math/0608426", "version": "v4", "published": "2006-08-16T16:46:38.000Z", "updated": "2007-10-03T09:29:19.000Z", "title": "New upper bounds for kissing numbers from semidefinite programming", "authors": [ "Christine Bachoc", "Frank Vallentin" ], "comment": "17 pages, (v4) references updated, accepted in Journal of the American Mathematical Society", "journal": "J. Amer. Math. Soc. 21 (2008), 909-924", "doi": "10.1090/S0894-0347-07-00589-9", "categories": [ "math.MG", "math.CO" ], "abstract": "Recently A. Schrijver derived new upper bounds for binary codes using semidefinite programming. In this paper we adapt this approach to codes on the unit sphere and we compute new upper bounds for the kissing number in several dimensions. In particular our computations give the (known) values for the cases n = 3, 4, 8, 24.", "revisions": [ { "version": "v4", "updated": "2007-10-03T09:29:19.000Z" } ], "analyses": { "subjects": [ "52C17", "90C22" ], "keywords": [ "upper bounds", "kissing number", "semidefinite programming", "unit sphere", "binary codes" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "J. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8426B" } } }