{ "id": "math/0608401", "version": "v1", "published": "2006-08-15T19:11:02.000Z", "updated": "2006-08-15T19:11:02.000Z", "title": "Singularities of Lagrangian mean curvature flow: monotone case", "authors": [ "Andre' Neves" ], "comment": "18 pages. 2 figures. Submitted", "categories": [ "math.DG", "math.SG" ], "abstract": "We study the formation of singularities for the mean curvature flow of monotone Lagrangians in $\\C^n$. More precisely, we show that if singularities happen before a critical time then the tangent flow can be decomposed into a finite union of area-minimizing Lagrangian cones (Slag cones). When $n=2$, we can improve this result by showing that connected components of the rescaled flow converge to an area-minimizing cone, as opposed to possible non-area minimizing union of Slag cones. In the last section, we give specific examples for which such singularity formation occurs.", "revisions": [ { "version": "v1", "updated": "2006-08-15T19:11:02.000Z" } ], "analyses": { "subjects": [ "53C44" ], "keywords": [ "lagrangian mean curvature flow", "monotone case", "slag cones", "singularity formation occurs", "area-minimizing lagrangian cones" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8401N" } } }