{ "id": "math/0608311", "version": "v3", "published": "2006-08-13T07:41:16.000Z", "updated": "2009-12-08T13:35:23.000Z", "title": "Upcrossing inequalities for stationary sequences and applications", "authors": [ "Michael Hochman" ], "comment": "Published in at http://dx.doi.org/10.1214/09-AOP460 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2009, Vol. 37, No. 6, 2135-2149", "doi": "10.1214/09-AOP460", "categories": [ "math.DS", "math.PR" ], "abstract": "For arrays $(S_{i,j})_{1\\leq i\\leq j}$ of random variables that are stationary in an appropriate sense, we show that the fluctuations of the process $(S_{1,n})_{n=1}^{\\infty}$ can be bounded in terms of a measure of the ``mean subadditivity'' of the process $(S_{i,j})_{1\\leq i\\leq j}$. We derive universal upcrossing inequalities with exponential decay for Kingman's subadditive ergodic theorem, the Shannon--MacMillan--Breiman theorem and for the convergence of the Kolmogorov complexity of a stationary sample.", "revisions": [ { "version": "v3", "updated": "2009-12-08T13:35:23.000Z" } ], "analyses": { "subjects": [ "37A30", "37A35", "60G10", "60G17", "94A17", "68Q30" ], "keywords": [ "stationary sequences", "applications", "kingmans subadditive ergodic theorem", "kolmogorov complexity", "random variables" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8311H" } } }