{ "id": "math/0608198", "version": "v2", "published": "2006-08-08T18:05:39.000Z", "updated": "2006-10-02T22:16:38.000Z", "title": "Linear combinations of graph eigenvalues", "authors": [ "Vladimir Nikiforov" ], "comment": "Some calculation errors from the first version have been corrected", "categories": [ "math.CO", "math.AC" ], "abstract": "Let F(G) be a fixed linear combination of the k extremal eigenvalues of a graph G and of its complement. The problem of finding max{F(G):v(G)=n} generalizes a number of problems raised previously in the literature. We show that the limit max{F(G):v(G)=n}/n exists when n tends to infinity. We also answer a question of Gernert about the sum of the two maximal eigenvalues of a graph.", "revisions": [ { "version": "v2", "updated": "2006-10-02T22:16:38.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "graph eigenvalues", "maximal eigenvalues", "fixed linear combination", "extremal eigenvalues", "complement" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8198N" } } }