{ "id": "math/0608092", "version": "v1", "published": "2006-08-03T14:45:27.000Z", "updated": "2006-08-03T14:45:27.000Z", "title": "The Bernstein problem for intrinsic graphs in Heisenberg groups and calibrations", "authors": [ "V. Barone Adesi", "F. Serra Cassano", "D. Vittone" ], "categories": [ "math.CA", "math.MG" ], "abstract": "In this paper we deal with some problems concerning minimal hypersurfaces in Carnot-Caratheodory (CC) structures. More precisely we will introduce a general calibration method in this setting and we will study the Bernstein problem for entire regular intrinsic minimal graphs in a meaningful and simpler class of CC spaces, i.e. the Heisenberg group H^n. In particular we will positively answer to the Bernstein problem in the case n=1 and we will provide counterexamples when n>=5.", "revisions": [ { "version": "v1", "updated": "2006-08-03T14:45:27.000Z" } ], "analyses": { "keywords": [ "bernstein problem", "heisenberg group", "intrinsic graphs", "entire regular intrinsic minimal graphs", "general calibration method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8092B" } } }