{ "id": "math/0608002", "version": "v1", "published": "2006-07-31T23:12:12.000Z", "updated": "2006-07-31T23:12:12.000Z", "title": "Hausdorff dimension of the set of points on divergent trajectories of a homogeneous flow on a product space", "authors": [ "Yitwah Cheung" ], "comment": "25 pages, to appear in Ergodic Theory and Dynamical Systems", "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "In this paper we compute the Hausdorff dimension of the set D_n of points on divergent trajectories of the homogeneous flow induced by a certain one-parameter subgroup of G=SL(2,R) acting by left multiplication on the product space G^n/Gamma^n, where Gamma=SL(2,Z). We prove that the Hausdorff dimension of D_n equals 3n-(1/2) for any n greater than one.", "revisions": [ { "version": "v1", "updated": "2006-07-31T23:12:12.000Z" } ], "analyses": { "subjects": [ "37A17", "11K40", "22E40", "11J70", "82C40" ], "keywords": [ "hausdorff dimension", "divergent trajectories", "product space", "homogeneous flow", "one-parameter subgroup" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......8002C" } } }