{ "id": "math/0607691", "version": "v2", "published": "2006-07-26T23:00:47.000Z", "updated": "2007-08-23T20:48:58.000Z", "title": "A combinatorial description of knot Floer homology", "authors": [ "Ciprian Manolescu", "Peter Ozsvath", "Sucharit Sarkar" ], "comment": "22 pages; 9 figures. Expanded proof of Proposition 2.3 and corrected typeos", "categories": [ "math.GT", "math.SG" ], "abstract": "Given a grid presentation of a knot (or link) K in the three-sphere, we describe a Heegaard diagram for the knot complement in which the Heegaard surface is a torus and all elementary domains are squares. Using this diagram, we obtain a purely combinatorial description of the knot Floer homology of K.", "revisions": [ { "version": "v2", "updated": "2007-08-23T20:48:58.000Z" } ], "analyses": { "subjects": [ "57R58", "57M25" ], "keywords": [ "knot floer homology", "elementary domains", "grid presentation", "heegaard surface", "knot complement" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7691M" } } }