{ "id": "math/0607663", "version": "v1", "published": "2006-07-26T10:38:00.000Z", "updated": "2006-07-26T10:38:00.000Z", "title": "On the fundamental group of real toric varieties", "authors": [ "V Uma" ], "comment": "17 pages", "journal": "Proc. Indian Acad. Sci. (Math. Sci), Vol. 114, No. 1, February 2004, pp-15-31.", "categories": [ "math.AG", "math.AT" ], "abstract": "Let $X(\\Delta)$ be the real toric variety associated to a smooth fan $\\Delta$. The main purpose of this article is: (i) to determine the fundamental group and the universal cover of $X(\\Delta)$, (ii) to give necessary and sufficient conditions on $\\Delta$ under which $\\pi_1(X(\\Delta))$ is abelian, (iii) to give necessary and sufficient conditions on $\\Delta$ under which $X(\\Delta)$ is aspherical, and when $\\Delta$ is complete, (iv) to give necessary and sufficient conditions for $\\cc_{\\Delta}$ to be a $K(\\pi,1)$ space where $\\cc_{\\Delta}$ is the complement of a real subspace arrangement associated to $\\Delta$.", "revisions": [ { "version": "v1", "updated": "2006-07-26T10:38:00.000Z" } ], "analyses": { "keywords": [ "fundamental group", "sufficient conditions", "real toric variety", "universal cover", "smooth fan" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7663U" } } }