{ "id": "math/0607631", "version": "v1", "published": "2006-07-25T14:25:56.000Z", "updated": "2006-07-25T14:25:56.000Z", "title": "Global existence for energy critical waves in 3-D domains", "authors": [ "Nicolas Burq", "Gilles Lebeau", "Fabrice Planchon" ], "comment": "15 pages, 2 figures", "categories": [ "math.AP" ], "abstract": "We prove that the defocusing quintic wave equation, with Dirichlet boundary conditions, is globally well posed on $H^1_0(\\Omega) \\times L^2(\\Omega)$ for any smooth (compact) domain $\\Omega \\subset \\mathbb{R}^3$. The main ingredient in the proof is an $L^5$ spectral projector estimate, obtained recently by Smith and Sogge, combined with a precise study of the boundary value problem.", "revisions": [ { "version": "v1", "updated": "2006-07-25T14:25:56.000Z" } ], "analyses": { "keywords": [ "energy critical waves", "global existence", "dirichlet boundary conditions", "defocusing quintic wave equation", "spectral projector estimate" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7631B" } } }