{ "id": "math/0607585", "version": "v1", "published": "2006-07-24T06:28:42.000Z", "updated": "2006-07-24T06:28:42.000Z", "title": "A Faber-Krahn inequality with drift", "authors": [ "Francois Hamel", "Nikolai Nadirashvili", "Emmanuel Russ" ], "categories": [ "math.AP" ], "abstract": "Let $\\Omega$ be a bounded $C^{2,\\alpha}$ domain in $\\R^n$ ($n\\geq 1$, $0<\\alpha<1$), $\\Omega^{\\ast}$ be the open Euclidean ball centered at 0 having the same Lebesgue measure as $\\Omega$, $\\tau\\geq 0$ and $v\\in L^{\\infty}(\\Omega,\\R^n)$ with $\\left\\Vert v\\right\\Vert\\_{\\infty}\\leq \\tau$. If $\\lambda\\_{1}(\\Omega,\\tau)$ denotes the principal eigenvalue of the operator $-\\Delta+v\\cdot\\nabla$ in $\\Omega$ with Dirichlet boundary condition, we establish that $\\lambda\\_{1}(\\Omega,v)\\geq \\lambda\\_{1}(\\Omega^{\\ast},\\tau e\\_{r})$ where $e\\_{r}(x)=x/| x|$. Moreover, equality holds only when, up to translation, $\\Omega=\\Omega^{\\ast}$ and $v=\\tau e\\_{r}$. This result can be viewed as an isoperimetric inequality for the first eigenvalue of the Dirichlet Laplacian with drift. It generalizes the celebrated Rayleigh-Faber-Krahn inequality for the first eigenvalue of the Dirichlet Laplacian.", "revisions": [ { "version": "v1", "updated": "2006-07-24T06:28:42.000Z" } ], "analyses": { "subjects": [ "35P15", "47A75", "49R50", "35J20" ], "keywords": [ "dirichlet laplacian", "first eigenvalue", "dirichlet boundary condition", "celebrated rayleigh-faber-krahn inequality", "lebesgue measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7585H" } } }