{ "id": "math/0607558", "version": "v1", "published": "2006-07-21T21:37:04.000Z", "updated": "2006-07-21T21:37:04.000Z", "title": "On the discriminant locus of a Lagrangian fibration", "authors": [ "Justin Sawon" ], "comment": "17 pages", "journal": "Math. Ann. 341 (2008), no. 1, 201-221", "categories": [ "math.AG" ], "abstract": "Let $X\\to\\P^n$ be an irreducible holomorphic symplectic manifold of dimension $2n$ fibred over $\\P^n$. Matsushita proved that the generic fibre is a holomorphic Lagrangian abelian variety. In this article we study the discriminant locus $\\Delta\\subset\\P^n$ parametrizing singular fibres. Our main result is a formula for the degree of $\\Delta$, leading to bounds on the degree when $X$ is a four-fold.", "revisions": [ { "version": "v1", "updated": "2006-07-21T21:37:04.000Z" } ], "analyses": { "subjects": [ "53C26", "14D06" ], "keywords": [ "discriminant locus", "lagrangian fibration", "holomorphic lagrangian abelian variety", "irreducible holomorphic symplectic manifold", "main result" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7558S" } } }