{ "id": "math/0607420", "version": "v1", "published": "2006-07-18T12:42:33.000Z", "updated": "2006-07-18T12:42:33.000Z", "title": "Transitive factorizations of free partially commutative monoids and Lie algebras", "authors": [ "Jean-Gabriel Luque", "Gérard Henry Edmond Duchamp" ], "journal": "Discrete Mathematics 246, Issue 1-3 (2002) 83 - 97", "categories": [ "math.CO", "cs.DM", "cs.SC", "math.GM" ], "abstract": "Let $\\M(A,\\theta)$ be a free partially commutative monoid. We give here a necessary and sufficient condition on a subalphabet $B\\subset A$ such that the right factor of a bisection $\\M(A,\\theta)=\\M(B,\\theta\\_B).T$ be also partially commutative free. This extends strictly the (classical) elimination theory on partial commutations and allows to construct new factorizations of $\\M(A,\\theta)$ and associated bases of $L\\_K(A,\\theta)$.", "revisions": [ { "version": "v1", "updated": "2006-07-18T12:42:33.000Z" } ], "analyses": { "keywords": [ "free partially commutative monoid", "lie algebras", "transitive factorizations", "sufficient condition", "partial commutations" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7420L" } } }