{ "id": "math/0607376", "version": "v1", "published": "2006-07-16T20:29:21.000Z", "updated": "2006-07-16T20:29:21.000Z", "title": "Asymptotic dimension and uniform embeddings", "authors": [ "S. R. Gal" ], "comment": "17 pages, no figures", "journal": "Groups Geom. Dyn. 2 (2008), no. 1, 63-84", "doi": "10.4171/GGD/31", "categories": [ "math.GT", "math.GR" ], "abstract": "We show that the type function of a space with finite asymptotic dimension estimates its Hilbert (or any $l^p$) compression. The method allows to obtain the lower bound of the compression of the lamplighter group $Z\\wr Z$, which has infinite asymptotic dimension.", "revisions": [ { "version": "v1", "updated": "2006-07-16T20:29:21.000Z" } ], "analyses": { "subjects": [ "20F69", "20F65", "20H15", "20E22", "54F45", "51F99" ], "keywords": [ "uniform embeddings", "finite asymptotic dimension estimates", "infinite asymptotic dimension", "type function", "compression" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7376G" } } }