{ "id": "math/0607352", "version": "v1", "published": "2006-07-14T18:05:31.000Z", "updated": "2006-07-14T18:05:31.000Z", "title": "Properties of the Generalized Zig-Zag Product of Graphs", "authors": [ "Samuel Cooper", "Dominic Dotterrer", "Stratos Prassidis" ], "comment": "15 pages", "categories": [ "math.CO" ], "abstract": "The operation of zig-zag products of graphs is the analogue of the semidirect product of groups. Using this observation, we present a categorical description of zig-zag products in order to generalize the construction for the category of simple graphs. Also, we examine the covering properties of zig-zag products and we utilize these results to estimate their spectral invariants in general. In addition, we provide specific spectral analysis for some such products.", "revisions": [ { "version": "v1", "updated": "2006-07-14T18:05:31.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "generalized zig-zag product", "specific spectral analysis", "simple graphs", "spectral invariants", "semidirect product" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7352C" } } }