{ "id": "math/0607240", "version": "v1", "published": "2006-07-10T14:35:21.000Z", "updated": "2006-07-10T14:35:21.000Z", "title": "New maximum principles for linear elliptic equations", "authors": [ "Hung-Ju Kuo", "Neil S. Trudinger" ], "categories": [ "math.AP" ], "abstract": "We prove extensions of the estimates of Aleksandrov and Bakel$'$man for linear elliptic operators in Euclidean space $\\Bbb{R}^{\\it n}$ to inhomogeneous terms in $L^q$ spaces for $q < n$. Our estimates depend on restrictions on the ellipticity of the operators determined by certain subcones of the positive cone. We also consider some applications to local pointwise and $L^2$ estimates.", "revisions": [ { "version": "v1", "updated": "2006-07-10T14:35:21.000Z" } ], "analyses": { "subjects": [ "35J15" ], "keywords": [ "linear elliptic equations", "maximum principles", "linear elliptic operators", "euclidean space", "estimates depend" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7240K" } } }