{ "id": "math/0607179", "version": "v2", "published": "2006-07-07T02:59:05.000Z", "updated": "2007-10-02T02:40:50.000Z", "title": "Topological Dichotomy and Strict Ergodicity for Translation Surfaces", "authors": [ "Yitwah Cheung", "Pascal Hubert", "Howard Masur" ], "comment": "25 pages, 6 figures. This revision contains an improved main theorem, simplified proofs, and an application to rational billiards", "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "In this paper the authors find examples of translation surfaces that have infinitely generated Veech groups, satisfy the topological dichotomy property that for every direction either the flow in that direction is completely periodic or minimal, and yet have minimal but non uniquely ergodic directions.", "revisions": [ { "version": "v2", "updated": "2007-10-02T02:40:50.000Z" } ], "analyses": { "subjects": [ "32G15", "30F30", "30F60", "58F18" ], "keywords": [ "translation surfaces", "strict ergodicity", "non uniquely ergodic directions", "infinitely generated veech groups", "topological dichotomy property" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7179C" } } }