{ "id": "math/0607156", "version": "v4", "published": "2006-07-06T12:20:11.000Z", "updated": "2007-09-15T02:39:08.000Z", "title": "Knot Floer homology detects fibred knots", "authors": [ "Yi Ni" ], "comment": "version 4: incorporates referee's suggestions, to appear in Inventiones Mathematicae", "doi": "10.1007/s00222-007-0075-9", "categories": [ "math.GT" ], "abstract": "Ozsv\\'ath and Szab\\'o conjectured that knot Floer homology detects fibred knots in $S^3$. We will prove this conjecture for null-homologous knots in arbitrary closed 3--manifolds. Namely, if $K$ is a knot in a closed 3--manifold $Y$, $Y-K$ is irreducible, and $\\hat{HFK}(Y,K)$ is monic, then $K$ is fibred. The proof relies on previous works due to Gabai, Ozsv\\'ath--Szab\\'o, Ghiggini and the author. A corollary is that if a knot in $S^3$ admits a lens space surgery, then the knot is fibred.", "revisions": [ { "version": "v4", "updated": "2007-09-15T02:39:08.000Z" } ], "analyses": { "subjects": [ "57R58", "57M27", "57R30" ], "keywords": [ "floer homology detects fibred knots", "knot floer homology detects", "lens space surgery", "conjecture", "proof relies" ], "tags": [ "journal article" ], "publication": { "journal": "Inventiones Mathematicae", "year": 2007, "month": "Sep", "volume": 170, "number": 3, "pages": 577 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007InMat.170..577N" } } }