{ "id": "math/0607151", "version": "v1", "published": "2006-07-06T09:50:37.000Z", "updated": "2006-07-06T09:50:37.000Z", "title": "A geometric description of $m$-cluster categories", "authors": [ "Karin Baur", "Robert J. Marsh" ], "comment": "14 pages, 5 figures", "journal": "Trans. Amer. Math. Soc. 360 (2008), 5789-5803", "categories": [ "math.RT", "math.RA" ], "abstract": "We show that the $m$-cluster category of type $A_{n-1}$ is equivalent to a certain geometrically-defined category of diagonals of a regular $nm+2$-gon. This generalises a result of Caldero, Chapoton and Schiffler for $m=1$. The approach uses the theory of translation quivers and their corresponding mesh categories. We also introduce the notion of the $m$th power of a translation quiver and show how it can be used to realise the $m$-cluster category in terms of the cluster category.", "revisions": [ { "version": "v1", "updated": "2006-07-06T09:50:37.000Z" } ], "analyses": { "subjects": [ "16G20", "16G70", "18E30" ], "keywords": [ "cluster category", "geometric description", "translation quiver", "corresponding mesh categories", "th power" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Trans. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7151B" } } }