{ "id": "math/0606781", "version": "v1", "published": "2006-06-30T06:19:11.000Z", "updated": "2006-06-30T06:19:11.000Z", "title": "On A Relation Between $q$-Exponential And $θ$-Function", "authors": [ "Ruiming Zhang" ], "categories": [ "math.CA", "math.CV" ], "abstract": "We will use a discrete analogue of the classical Laplace method to show that for infinitely many positive integers $n$, the main term of the asymptotic expansion of the scaled $q$-exponential $(-q^{-nt+1/2}u;q)_{\\infty}$ could be expressed in $\\theta$-function.", "revisions": [ { "version": "v1", "updated": "2006-06-30T06:19:11.000Z" } ], "analyses": { "subjects": [ "33D45", "33E05" ], "keywords": [ "exponential", "asymptotic expansion", "discrete analogue", "main term" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6781Z" } } }