{ "id": "math/0606780", "version": "v3", "published": "2006-06-30T05:25:15.000Z", "updated": "2007-01-18T00:16:09.000Z", "title": "Traverso's isogeny conjecture for p-divisible groups", "authors": [ "Marc-Hubert Nicole", "Adrian Vasiu" ], "comment": "8 pages, laTex; to appear in Rend. Sem. Mat. Univ. Padova", "journal": "Rend. Semin. Mat. Univ. Padova 118 (2007), 73--83", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $k$ be an algebraically closed field of characteristic $p>0$. Let $c,d\\in\\dbN$. Let $b_{c,d}\\ge 1$ be the smallest integer such that for any two $p$-divisible groups $H$ and $H^\\prime$ over $k$ of codimension $c$ and dimension $d$ the following assertion holds: If $H[p^{b_{c,d}}]$ and $H^\\prime[p^{b_{c,d}}]$ are isomorphic, then $H$ and $H^\\prime$ are isogenous. We show that $b_{c,d}=\\lceil{cd\\over {c+d}}\\rceil$. This proves Traverso's isogeny conjecture for $p$-divisible groups over $k$.", "revisions": [ { "version": "v3", "updated": "2007-01-18T00:16:09.000Z" } ], "analyses": { "subjects": [ "11G10", "11G18", "14F30", "14G35", "14L05" ], "keywords": [ "traversos isogeny conjecture", "p-divisible groups", "smallest integer", "assertion holds", "characteristic" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6780N" } } }