{ "id": "math/0606762", "version": "v1", "published": "2006-06-29T15:06:32.000Z", "updated": "2006-06-29T15:06:32.000Z", "title": "Computation of central value of quadratic twists of modular L-functions", "authors": [ "Zhengyu Mao", "Fernando Rodriguez-Villegas", "Gonzalo TornarĂ­a" ], "comment": "13 pages; to appear in \"Ranks of elliptic curves and random matrix theory.\" (2005)", "categories": [ "math.NT" ], "abstract": "Let f be a newform of weight two, prime level p. If D is a fundamental discriminant, define the twisted L-function L(f,D,s) to be the L-function associated to the twist of f by the quadratic character of conductor D. In this paper we consider the question of computing the family of twisted central values {L(f,D,1) : |D| <= x} for some x, by using an explicit version of Waldspurger's formula relating the central values L(f,D,1) to the |D|-th Fourier coefficient of weigth 3/2 modular forms in Shimura correspondence with f.", "revisions": [ { "version": "v1", "updated": "2006-06-29T15:06:32.000Z" } ], "analyses": { "subjects": [ "11F37", "11F67" ], "keywords": [ "quadratic twists", "modular l-functions", "computation", "fundamental discriminant", "quadratic character" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6762M" } } }