{ "id": "math/0606719", "version": "v2", "published": "2006-06-28T12:59:46.000Z", "updated": "2007-11-27T07:55:08.000Z", "title": "Scaling limit for trap models on $\\mathbb{Z}^d$", "authors": [ "Gérard Ben Arous", "Jiří Černý" ], "comment": "Published in at http://dx.doi.org/10.1214/009117907000000024 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2007, Vol. 35, No. 6, 2356-2384", "doi": "10.1214/009117907000000024", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We give the ``quenched'' scaling limit of Bouchaud's trap model in ${d\\ge 2}$. This scaling limit is the fractional-kinetics process, that is the time change of a $d$-dimensional Brownian motion by the inverse of an independent $\\alpha$-stable subordinator.", "revisions": [ { "version": "v2", "updated": "2007-11-27T07:55:08.000Z" } ], "analyses": { "subjects": [ "60K37", "60G52", "60F17", "82D30" ], "keywords": [ "scaling limit", "bouchauds trap model", "dimensional brownian motion", "fractional-kinetics process", "time change" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6719B" } } }