{ "id": "math/0606460", "version": "v2", "published": "2006-06-19T14:29:34.000Z", "updated": "2006-09-05T19:31:54.000Z", "title": "Parities of v-decomposition numbers and an application to symmetric group algebras", "authors": [ "Kai Meng Tan" ], "comment": "21 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "We prove that the v-decomposition number $d_{\\lambda\\mu}(v)$ is an even or odd polynomial according to whether the partitions $\\lambda$ and $\\mu$ have the same relative sign (or parity) or not. We then use this result to verify Martin's conjecture for weight 3 blocks of symmetric group algebras -- that these blocks have the property that their projective (indecomposable) modules have a common radical length 7.", "revisions": [ { "version": "v2", "updated": "2006-09-05T19:31:54.000Z" } ], "analyses": { "subjects": [ "17B37", "20C30" ], "keywords": [ "symmetric group algebras", "v-decomposition number", "application", "odd polynomial", "verify martins conjecture" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6460M" } } }