{ "id": "math/0606423", "version": "v2", "published": "2006-06-17T17:32:12.000Z", "updated": "2006-06-30T00:58:08.000Z", "title": "Test Configurations for K-Stability and Geodesic Rays", "authors": [ "D. H. Phong", "Jacob Sturm" ], "comment": "27 pages, no figure; references added; typos corrected", "categories": [ "math.DG", "math.AG" ], "abstract": "Let $X$ be a compact complex manifold, $L\\to X$ an ample line bundle over $X$, and ${\\cal H}$ the space of all positively curved metrics on $L$. We show that a pair $(h_0,T)$ consisting of a point $h_0\\in {\\cal H}$ and a test configuration $T=({\\cal L}\\to {\\cal X}\\to {\\bf C})$, canonically determines a weak geodesic ray $R(h_0,T)$ in ${\\cal H}$ which emanates from $h_0$. Thus a test configuration behaves like a vector field on the space of K\\\"ahler potentials ${\\cal H}$. We prove that $R$ is non-trivial if the ${\\bf C}^\\times$ action on $X_0$, the central fiber of $\\cal X$, is non-trivial. The ray $R$ is obtained as limit of smooth geodesic rays $R_k\\subset{\\cal H}_k$, where ${\\cal H}_k\\subset{\\cal H}$ is the subspace of Bergman metrics.", "revisions": [ { "version": "v2", "updated": "2006-06-30T00:58:08.000Z" } ], "analyses": { "keywords": [ "k-stability", "test configuration behaves", "ample line bundle", "weak geodesic ray", "compact complex manifold" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6423P" } } }