{ "id": "math/0606392", "version": "v1", "published": "2006-06-16T13:19:35.000Z", "updated": "2006-06-16T13:19:35.000Z", "title": "Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process", "authors": [ "Manuel Lladser", "Jaime San Martin" ], "comment": "11 pages", "journal": "J. Appl. Probab. 37, no. 2 (2000), 511-521", "categories": [ "math.PR", "math-ph", "math.MP", "math.ST", "stat.TH" ], "abstract": "Let $X=(X_t)$ be a one-dimensional Ornstein-Uhlenbeck process with an initial density function $f$ supported on the positive real-line that is a regularly varying function with exponent $-(1+\\eta)$, with $\\eta\\in (0,1)$. We prove the existence of a probability measure $\\nu$ with a Lebesgue density, depending on $\\eta$, such that for every Borel set $A$ of the positive real-line: $\\lim_{t\\to\\infty} P_f(X_t\\in A | T_0^X>t)=\\nu(A)$, where $T_0^X$ is the hitting time of 0 of $X$.", "revisions": [ { "version": "v1", "updated": "2006-06-16T13:19:35.000Z" } ], "analyses": { "subjects": [ "60H10", "65C30" ], "keywords": [ "quasi-stationary distributions", "attraction", "initial density function", "one-dimensional ornstein-uhlenbeck process", "positive real-line" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6392L" } } }