{ "id": "math/0606385", "version": "v1", "published": "2006-06-16T05:17:19.000Z", "updated": "2006-06-16T05:17:19.000Z", "title": "On homeomorphisms and quasi-isometries of the real line", "authors": [ "Parameswaran Sankaran" ], "comment": "9 pages", "journal": "Proc. Amer. Math. Soc. 134 (2006), no. 7, (1875-1889)(electronic)", "categories": [ "math.GT" ], "abstract": "We show that the group of all pl-homeomorphisms of the reals having bounded slopes surjects on the group $QI({\\Bbb R})$ of all quasi-isometries of ${\\Bbb R}$. We prove that the following groups can be imbedded in $QI({\\Bbb R})$: The group of compactly supported pl-homeomorphisms of the reals, the Richard Thompson group F, and the free group of rank the continuum.", "revisions": [ { "version": "v1", "updated": "2006-06-16T05:17:19.000Z" } ], "analyses": { "subjects": [ "20F65", "20F28" ], "keywords": [ "real line", "quasi-isometries", "richard thompson group", "free group", "bounded slopes surjects" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6385S" } } }