{ "id": "math/0606299", "version": "v2", "published": "2006-06-13T09:30:49.000Z", "updated": "2010-03-24T14:30:42.000Z", "title": "The Gauss map of minimal surfaces in the Heisenberg group", "authors": [ "BenoƮt Daniel" ], "comment": "17 pages, redaction improved.", "journal": "Int. Math. Res. Not. IMRN 2011 (2011), no. 3, 674-695", "categories": [ "math.DG" ], "abstract": "We study the Gauss map of minimal surfaces in the Heisenberg group $\\mathrm{Nil}_3$ endowed with a left-invariant Riemannian metric. We prove that the Gauss map of a nowhere vertical minimal surface is harmonic into the hyperbolic plane $\\mathbb{H}^2$. Conversely, any nowhere antiholomorphic harmonic map into $\\mathbb{H}^2$ is the Gauss map of a nowhere vertical minimal surface. Finally, we study the image of the Gauss map of complete nowhere vertical minimal surfaces.", "revisions": [ { "version": "v2", "updated": "2010-03-24T14:30:42.000Z" } ], "analyses": { "subjects": [ "53A10", "53C42", "53A35", "53C43" ], "keywords": [ "gauss map", "heisenberg group", "vertical minimal surface", "left-invariant riemannian metric", "antiholomorphic harmonic map" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6299D" } } }