{ "id": "math/0606205", "version": "v1", "published": "2006-06-09T04:53:59.000Z", "updated": "2006-06-09T04:53:59.000Z", "title": "Attractor-repeller pair, Morse decomposition and Lyapunov function for random dynamical systems", "authors": [ "Zhenxin Liu", "Shuguan Ji", "Menglong Su" ], "comment": "17 pages, Latex", "categories": [ "math.DS" ], "abstract": "In the stability theory of dynamical systems, Lyapunov functions play a fundamental role. In this paper, we study the attractor-repeller pair decomposition and Morse decomposition for compact metric space in the random setting. In contrast to [8], by introducing slightly stronger definitions of random attractor and repeller, we characterize attractor-repeller pair decompositions and Morse decompositions for random dynamical systems through the existence of Lyapunov functions. These characterizations, we think, deserve to be known widely.", "revisions": [ { "version": "v1", "updated": "2006-06-09T04:53:59.000Z" } ], "analyses": { "subjects": [ "37H99", "37B25", "37B55" ], "keywords": [ "random dynamical systems", "morse decomposition", "characterize attractor-repeller pair decompositions", "compact metric space", "lyapunov functions play" ], "note": { "typesetting": "LaTeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6205L" } } }