{ "id": "math/0606182", "version": "v1", "published": "2006-06-08T10:13:17.000Z", "updated": "2006-06-08T10:13:17.000Z", "title": "Linear Representations of the Automorphism Group of a Free Group", "authors": [ "Fritz Grunewald", "Alexander Lubotzky" ], "categories": [ "math.GR", "math.RT" ], "abstract": "Let $F_n$ be the free group on $n\\ge 2$ elements and $\\A(F_n)$ its group of automorphisms. In this paper we present a rich collection of linear representations of $\\A(F_n)$ arising through the action of finite index subgroups of it on relation modules of finite quotient groups of $F_n$. We show (under certain conditions) that the images of our representations are arithmetic groups.", "revisions": [ { "version": "v1", "updated": "2006-06-08T10:13:17.000Z" } ], "analyses": { "keywords": [ "free group", "linear representations", "automorphism group", "finite quotient groups", "finite index subgroups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6182G" } } }