{ "id": "math/0606171", "version": "v1", "published": "2006-06-07T21:35:47.000Z", "updated": "2006-06-07T21:35:47.000Z", "title": "An inverse problem with data on the part of the boundary", "authors": [ "A. G. Ramm" ], "categories": [ "math.AP" ], "abstract": "Let $u_t=\\nabla^2 u-q(x)u:=Lu$ in $D\\times [0,\\infty)$, where $D\\subset R^3$ is a bounded domain with a smooth connected boundary $S$, and $q(x)\\in L^2(S)$ is a real-valued function with compact support in $D$. Assume that $u(x,0)=0$, $u=0$ on $S_1\\subset S$, $u=a(s,t)$ on $S_2=S\\setminus S_1$, where $a(s,t)=0$ for $t>T$, $a(s,t)\\not\\equiv 0$, $a\\in C([0,T];H^{3/2}(S_2))$ is arbitrary. Given the extra data $u_N|_{S_2}=b(s,t)$, for each $a\\in C([0,T];H^{3/2}(S_2))$, where $N$ is the outer normal to $S$, one can find $q(x)$ uniquely. A similar result is obtained for the heat equation $u_t=\\mathcal{L} u:=%\\triangledown \\nabla \\cdot (a \\nabla u)$. These results are based on new versions of Property C.", "revisions": [ { "version": "v1", "updated": "2006-06-07T21:35:47.000Z" } ], "analyses": { "subjects": [ "35K20", "35R30" ], "keywords": [ "inverse problem", "heat equation", "smooth connected boundary", "extra data", "outer normal" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6171R" } } }