{ "id": "math/0606157", "version": "v1", "published": "2006-06-07T14:37:07.000Z", "updated": "2006-06-07T14:37:07.000Z", "title": "Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting", "authors": [ "Mihai Mihailescu", "Vicentiu Radulescu" ], "categories": [ "math.AP" ], "abstract": "We study the boundary value problem $-{\\rm div}(\\log(1+ |\\nabla u|^q)|\\nabla u|^{p-2}\\nabla u)=f(u)$ in $\\Omega$, $u=0$ on $\\partial\\Omega$, where $\\Omega$ is a bounded domain in $\\RR^N$ with smooth boundary. We distinguish the cases where either $f(u)=-\\lambda|u|^{p-2}u+|u|^{r-2}u$ or $f(u)=\\lambda|u|^{p-2}u-|u|^{r-2}u$, with $p$, $q>1$, $p+q<\\min\\{N,r\\}$, and $r<(Np-N+p)/(N-p)$. In the first case we show the existence of infinitely many weak solutions for any $\\lambda>0$. In the second case we prove the existence of a nontrivial weak solution if $\\lambda$ is sufficiently large. Our approach relies on adequate variational methods in Orlicz-Sobolev spaces.", "revisions": [ { "version": "v1", "updated": "2006-06-07T14:37:07.000Z" } ], "analyses": { "subjects": [ "35D05", "35J60", "35J70", "46N20" ], "keywords": [ "quasilinear nonhomogeneous problems", "orlicz-sobolev space setting", "multiplicity", "boundary value problem", "adequate variational methods" ], "publication": { "journal": "Journal of Mathematical Analysis and Applications", "year": 2007, "month": "Jun", "volume": 330, "number": 1, "pages": 416 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007JMAA..330..416M" } } }