{ "id": "math/0605721", "version": "v2", "published": "2006-05-29T09:47:25.000Z", "updated": "2006-06-02T14:24:03.000Z", "title": "The Laplace and Mellin transforms of powers of the Riemann zeta-function", "authors": [ "Aleksandar Ivić" ], "comment": "20 pages", "journal": "International J. of Mathematics and Analysis Vol. 1 No. 2, 2006, pp. 131-140", "categories": [ "math.NT" ], "abstract": "This paper gives a survey of known results concerning the Laplace transform $$ L_k(s) := \\int_0^\\infty |\\zeta(1/2+ ix)|^{2k}{\\rm e}^{-sx}{\\rm d} x \\qquad(k \\in N, \\R s > 0), $$ and the (modified) Mellin transform $$ {\\cal Z}_k(s) := \\int_1^\\infty|\\zeta(1/2+ ix)|^{2k}x^{-s}{\\rm d} x\\qquad(k\\in N), $$ where the integral is absolutely convergent for $\\R s \\ge c(k) > 1$. Also some new results on these integral transforms of $|\\zeta(1/2+ ix)|^{2k}$ are given, which have important connections with power moments of the Riemann zeta-function $\\zeta(s)$.", "revisions": [ { "version": "v2", "updated": "2006-06-02T14:24:03.000Z" } ], "analyses": { "subjects": [ "11M06", "11F72" ], "keywords": [ "mellin transform", "riemann zeta-function", "integral transforms", "laplace transform", "power moments" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5721I" } } }