{ "id": "math/0605708", "version": "v1", "published": "2006-05-29T01:01:57.000Z", "updated": "2006-05-29T01:01:57.000Z", "title": "Invariance of tautological equations II: Gromov--Witten theory", "authors": [ "Y. -P. Lee" ], "comment": "This article supercedes part of math.AG/0311100", "categories": [ "math.AG" ], "abstract": "The aim of Part II is to explore the technique of invariance of tautological equations in the realm of Gromov--Witten theory. The main result is a proof of Invariance Theorem (Invariance Conjecture~1 in [14]), via the techniques from Gromov--Witten theory. It establishes some general inductive structure of the tautological rings, and provides a new tool to the study of this area.", "revisions": [ { "version": "v1", "updated": "2006-05-29T01:01:57.000Z" } ], "analyses": { "keywords": [ "gromov-witten theory", "tautological equations", "main result", "invariance theorem", "general inductive structure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5708L" } } }