{ "id": "math/0605571", "version": "v3", "published": "2006-05-21T21:39:39.000Z", "updated": "2007-07-24T23:26:20.000Z", "title": "The Jones polynomial and graphs on surfaces", "authors": [ "Oliver T. Dasbach", "David Futer", "Efstratia Kalfagianni", "Xiao-Song Lin", "Neal W. Stoltzfus" ], "comment": "19 pages, 9 figures, minor changes", "journal": "J. Comb. Theory, Series B, Vol 98/2, 2008, pp 384-399", "doi": "10.1016/j.jctb.2007.08.003", "categories": [ "math.GT", "math.CO" ], "abstract": "The Jones polynomial of an alternating link is a certain specialization of the Tutte polynomial of the (planar) checkerboard graph associated to an alternating projection of the link. The Bollobas-Riordan-Tutte polynomial generalizes the Tutte polynomial of planar graphs to graphs that are embedded in closed oriented surfaces of higher genus. In this paper we show that the Jones polynomial of any link can be obtained from the Bollobas-Riordan-Tutte polynomial of a certain oriented ribbon graph associated to a link projection. We give some applications of this approach.", "revisions": [ { "version": "v3", "updated": "2007-07-24T23:26:20.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "jones polynomial", "bollobas-riordan-tutte polynomial generalizes", "checkerboard graph", "planar graphs" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5571D" } } }