{ "id": "math/0605535", "version": "v2", "published": "2006-05-18T22:29:12.000Z", "updated": "2006-10-05T12:23:49.000Z", "title": "Pseudocycles and Integral Homology", "authors": [ "Aleksey Zinger" ], "comment": "28 pages, 2 figures; a long technical construction has been simplified", "categories": [ "math.AT", "math.SG" ], "abstract": "We describe a natural isomorphism between the set of equivalence classes of pseudocycles and the integral homology groups of a smooth manifold. Our arguments generalize to settings well-suited for applications in enumerative algebraic geometry and for construction of the virtual fundamental class in the Gromov-Witten theory.", "revisions": [ { "version": "v2", "updated": "2006-10-05T12:23:49.000Z" } ], "analyses": { "subjects": [ "55N99", "57R95" ], "keywords": [ "pseudocycles", "integral homology groups", "virtual fundamental class", "natural isomorphism", "equivalence classes" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5535Z" } } }