{ "id": "math/0605529", "version": "v2", "published": "2006-05-18T20:10:10.000Z", "updated": "2006-07-11T21:16:48.000Z", "title": "A generalization of several classical invariants of links", "authors": [ "David Cimasoni", "Vladimir Turaev" ], "comment": "25 pages, 6 figures", "journal": "Osaka J. Math. 44 (2007), 1-31", "categories": [ "math.GT" ], "abstract": "We extend several classical invariants of links in the 3-sphere to links in so-called quasi-cylinders. These invariants include the linking number, the Seifert form, the Alexander module, the Alexander-Conway polynomial and the Murasugi-Tristram-Levine signatures.", "revisions": [ { "version": "v2", "updated": "2006-07-11T21:16:48.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "classical invariants", "generalization", "murasugi-tristram-levine signatures", "alexander-conway polynomial", "alexander module" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5529C" } } }