{ "id": "math/0605493", "version": "v2", "published": "2006-05-17T23:30:54.000Z", "updated": "2006-05-18T20:43:52.000Z", "title": "On embedding the fundamental group of a 3-manifold in one of its knot groups", "authors": [ "Robert Myers" ], "comment": "6 pages", "categories": [ "math.GT", "math.GR" ], "abstract": "This paper gives necessary and sufficient conditions on a compact, connected, orientable 3-manifold M for it to contain a knot K such that M-K is irreducible and pi_1(M) embeds in pi_1(M-K). This result provides counterexamples to a conjecture of Lopes and Morales and characterizes those orientable 3-manifolds for which it is true.", "revisions": [ { "version": "v2", "updated": "2006-05-18T20:43:52.000Z" } ], "analyses": { "subjects": [ "57N10", "57M05" ], "keywords": [ "fundamental group", "knot groups", "sufficient conditions", "counterexamples", "conjecture" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5493M" } } }