{ "id": "math/0605448", "version": "v2", "published": "2006-05-16T18:32:50.000Z", "updated": "2006-05-16T20:04:00.000Z", "title": "Scales and the fine structure of K(R). Part II: Weak real mice and scales", "authors": [ "D. W. Cunningham" ], "comment": "27 pages", "categories": [ "math.LO" ], "abstract": "We define weak real mice $\\mathcal{M}$ and prove that the boldface pointclass $\\boldsymbol{\\Sigma}_m(\\mathcal{M})$ has the scale property assuming only the determinacy of sets of reals in $\\mathcal{M}$ when $m$ is the smallest integer $m>0$ such that $\\boldsymbol{\\Sigma}_m(\\mathcal{M})$ contains a set of reals not in $\\mathcal{M}$. We shall use this development in Part III to obtain scales of minimal complexity in $K(\\mathbb{R})$.", "revisions": [ { "version": "v2", "updated": "2006-05-16T20:04:00.000Z" } ], "analyses": { "subjects": [ "03E15", "03E45", "03E60" ], "keywords": [ "fine structure", "define weak real mice", "minimal complexity", "smallest integer", "boldface pointclass" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5448C" } } }