{ "id": "math/0605444", "version": "v3", "published": "2006-05-16T16:46:26.000Z", "updated": "2006-06-01T14:51:18.000Z", "title": "Abelian Varieties over Cyclic Fields", "authors": [ "Bo-Hae Im", "Michael Larsen" ], "comment": "15 pages; minor changes", "categories": [ "math.NT", "math.AG" ], "abstract": "Let K be a field not of characteristic 2 such that every finite separable extension of K is cyclic. Let A be an abelian variety over K. If K is infinite, then A(K) is Zariski-dense in A. If K is not locally finite, the rank of A over K is infinite.", "revisions": [ { "version": "v3", "updated": "2006-06-01T14:51:18.000Z" } ], "analyses": { "subjects": [ "11G10" ], "keywords": [ "abelian variety", "cyclic fields", "finite separable extension" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5444I" } } }