{ "id": "math/0605358", "version": "v6", "published": "2006-05-14T05:00:40.000Z", "updated": "2009-01-31T19:27:31.000Z", "title": "Conditional Proof of the Boltzmann-Sinai Ergodic Hypothesis", "authors": [ "Nandor Simanyi" ], "comment": "Final version; to appear in Inventiones Mathematicae", "journal": "Inventiones Mathematicae, Vol. 177, No. 2 (2009), pp. 381-413", "doi": "10.1007/s00222-009-0182-x", "categories": [ "math.DS" ], "abstract": "We consider the system of $N$ ($\\ge2$) elastically colliding hard balls of masses $m_1,...,m_N$ and radius $r$ on the flat unit torus $\\Bbb T^\\nu$, $\\nu\\ge2$. We prove the so called Boltzmann-Sinai Ergodic Hypothesis, i. e. the full hyperbolicity and ergodicity of such systems for every selection $(m_1,...,m_N;r)$ of the external geometric parameters, provided that almost every singular orbit is geometrically hyperbolic (sufficient), i. e. the so called Chernov-Sinai Ansatz is true. The present proof does not use the formerly developed, rather involved algebraic techniques, instead it employs exclusively dynamical methods and tools from geometric analysis.", "revisions": [ { "version": "v6", "updated": "2009-01-31T19:27:31.000Z" } ], "analyses": { "subjects": [ "37D50", "34D05" ], "keywords": [ "boltzmann-sinai ergodic hypothesis", "conditional proof", "flat unit torus", "external geometric parameters", "full hyperbolicity" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5358S" } } }