{ "id": "math/0605315", "version": "v2", "published": "2006-05-11T20:57:13.000Z", "updated": "2006-08-24T23:34:05.000Z", "title": "Global results for Schrödinger Maps in dimensions $n \\geq 3$", "authors": [ "Ioan Bejenaru" ], "comment": "The previous version had few gaps in the argument. The new version fixes them", "categories": [ "math.AP" ], "abstract": "We study the global well-posedness theory for the Schr\\\"odinger Maps equation. We work in $n+1$ dimensions, for $n \\geq 3$, and prove a local well-posedness for small initial data in $\\dot{B}^{\\frac{n}{2}}_{2,1}$.", "revisions": [ { "version": "v2", "updated": "2006-08-24T23:34:05.000Z" } ], "analyses": { "subjects": [ "35K55" ], "keywords": [ "schrödinger maps", "global results", "dimensions", "global well-posedness theory", "small initial data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5315B" } } }