{ "id": "math/0605160", "version": "v1", "published": "2006-05-06T01:35:17.000Z", "updated": "2006-05-06T01:35:17.000Z", "title": "Jacobians with a vanishing theta-null in genus 4", "authors": [ "Samuel Grushevsky", "Riccardo Salvati Manni" ], "categories": [ "math.AG" ], "abstract": "In this paper we prove a conjecture of Hershel Farkas that if a 4-dimensional principally polarized abelian variety has a vanishing theta-null, and the hessian of the theta function at the corresponding point of order two is degenerate, the abelian variety is a Jacobian. We also discuss possible generalizations to higher genera, and an interpretation of this condition as an infinitesimal version of Andreotti and Mayer's local characterization of Jacobians by the dimension of the singular locus of the theta divisor.", "revisions": [ { "version": "v1", "updated": "2006-05-06T01:35:17.000Z" } ], "analyses": { "keywords": [ "vanishing theta-null", "mayers local characterization", "theta divisor", "hershel farkas", "principally polarized abelian variety" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......5160G" } } }